

SIDDARTHA INSTITUTE OF SCIENCE AND TECHNOLOGY :: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road – 517583 <u>QUESTION BANK (DESCRIPTIVE)</u>

Subject with Code : Database Management System (19CS0506) Course & Branch : B.Tech – CSE Year & Sem : II-B.Tech I-Sem

Regulation : R19

<u>UNIT – I</u>

INTRODUCTION TO DATABASE SYSTEM AND DATA BASE DESIGN

1	(a)	Define Database? Discuss about applications of Database Systems?	[L1][CO1]	[6M]
	(b)	List out the purpose of Database Systems.	[L1][CO1]	[6M]
2	(a)	Explain about Views of data.	[L2][CO1]	[6M]
	(b)	Explain about various data models.	[L2][CO1]	[6M]
3	(a)	Explain the Architecture of Database with a neat diagram.	[L4][CO1]	[6M]
	(b)	Write a short note on Database users and administrators?	[L3][CO1]	[6M]
4		Explain about Database languages with examples?	[L4][CO1]	[12M]
5	(a)	Classify i) Database ii) DBMS iii) List the database Applications	[L4][CO1]	[6M]
	(b)	Outline the Data Abstraction and discuss levels of Abstraction?	[L2][CO1]	[6M]
6	(a)	Explain about ER model and Component of ER Diagram.	[L4][CO1]	[12M]
7	(a)	Write about logical database design (ER to Relational) with suitable examples?	[L3][CO2]	[6M]
	(b)	Give an example of Attribute and List various types of attributes.	[L2][CO1]	[4M]
	(c)	Define Relationship set.	[L1][CO1]	[2M]
8		Compare Relationship and Relationship set.	[L2][CO1]	[12M]
9		Construct ER Diagram for University(i.e. Banking system, Hospital management system, Railway Reservation system, Online Shopping)	[L6][CO2]	[12M]
10	(a)	Create the DDL Commands – Table Creation, Altering the table structures, truncating a table and dropping a table.	[L6][CO1]	[6M]
	(b)	Implement the DML Commands – Insert, Select Commands, update& delete Commands.	[L6][CO1]	[6M]

<u>UNIT – II</u> <u>RELATIONAL ALGEBRA AND CALCULUS, FORM OF BASIC SOL OUERY</u>

1	(a)	Identify relational database query?	[L2][CO2] [6M]
	(b)	Distinguish GROUP by and HAVING clauses with examples?	[L5][CO2] [6M]
2	(a)	Illustrate different operations in Relational algebra with an example?	[L2][CO2] [6M]
	(b)	Discuss about Complex integrity constraints in SQL?	[L2][CO2] [6M]
3		Classify the Relational calculus in detail?	[L2][CO2] [12M]
4	(a)	Define NULL VALUE? Describe the effect of null values in database?	[L1][CO2] [6M]
	(b)	Distinguish different types of aggregate operators with examples in SQL?	[L4][CO2] [6M]
5	(a)	Evaluate project, join, select and product set operators with examples.	[L5][CO2] [6M]
	(b)	Describe the SET operators with example.	[L1][CO2] [6M]
6	(a)	Develop the working of union, intersection and except operations	[L6][CO2] [6M]
	(b)	Give an examples of clauses SELECT with an example.	[L2][CO2] [6M]
7	(a)	Distinguish between two set theoretic operations of relational algebra with an example.	[L2][CO2] [6M]
	(b)	Create a sub query to establish the WHERE, ANY, AS and ALL sub queries with example.	[L6][CO2] [6M]
8	(a)	Discuss the candidate key, primary key, super key, composite key and alternate key.	[L2][CO2] [6M]
		Explain the following terms:	
		Data Redundancy and consistency	
	(b)	Referential Integrity	
		Data atomicity	[L4][CO2] [6M]
		Domain	
		constraints	
9		Data models Categorize the types of joins?	[L4][CO2] [12M]
10	(a)	Express a nested query?	[L2][CO2] [2M]
	(b)	Create a nested query to find the names of sailors who have reserved both a red and	
		Green boat?	[L6][CO2] [5M]
	(c)	Construct a nested query to find the names of sailors who have reserved all boats?	[L6][CO2] [5M]

INTRODUCTION TO SCHEMA REFINEMENT, PROPERTIES OF DECOMPOSITIONS:

1.	a) b)	Illustrate redundancy and the problems that it can cause. Explain about Functional Dependency.	[L2][CO3] [6M] [L4][CO3] [6M]
2.		Explain in detail about 1NF, 2NF, 3NF and BCNF with example.	[L6][CO3] [12M]
3.		Discuss about 4NF/MVD with example.	[L2][CO3] [12M]
4.		Discuss about 5NF/PJNF with example.	[L2][CO3] [12M]
5.	a) b)	Discuss about Armstrong Axiom's in functional Dependency. Define Decomposition. List out the properties of decomposition.	[L4][CO3] [6M] [L4][CO3] [6M]
6.	a) b)	Illustrate the types of anomalies with example. Let R (A, B, C) and F = (A \rightarrow B). Prove that the decomposition of R into R1 (A, B) and R2(A, C) is lossless - join decomposition.	[L4][CO3] [6M] [L3][CO3] [6M]
7.	a)	Consider the schema: R (A, B, C, G, H, I) and the set of FD's $(A \rightarrow B, A \rightarrow C, CG \rightarrow H, CG \rightarrow I, B \rightarrow H)$. Prove the members of $F^+: A \rightarrow H, CG \rightarrow HI, AG \rightarrow I$ with axioms is true.	[L3][CO3][6M]
	b)	Consider the relation scheme $R = \{E, F, G, H, I, J, K, L, M, M\}$ and the set of functional dependencies $\{\{E, F\} \rightarrow \{G\}, \{F\} \rightarrow \{I, J\}, \{E, H\} \rightarrow \{K, L\}, K \rightarrow \{M\}, L \rightarrow \{N\}$ on R. What is the key for R?	[L5][CO3] [6M]
8.	a)	What is Normalization? List out the purpose normalization. Outline the terminologies: Partial Dependency, Transitive Dependency, Determinant, MVD, Join Dependency	[L1][CO3] [6M]
	b)		[L2][CO3] [6M]
9.	a) b)	Compare 3NF and BCNF with example. The relation schema Student_Performance (name, courseNo, rollNo, grade) has the following FDs: name,courseNo->grade	[L4][CO3] [6M]
		rollNo,courseNo->grade name->rollNo rollNo->name What is the highest normal form of this relation scheme?	[L3][CO3] [6M]
10.	a)	Compare Trivial and Non – Trivial Functional Dependencies with example.	[L4][CO3] [6M]
	b)	Explain the following with suitable example. (i) Full functional dependency. (ii) Partial dependency.	[L4][CO3] [6M]

R19

<u>UNIT – IV</u>

TRANSACTION AND CONCURRENCY

1	(a)	Define a Transaction? List the properties of transaction	[L1][CO4]	[6M]
	(b)	Write briefly about serializability with example.	[L3][CO4]	[6M]
2	(a)	Discuss How do you implement Atomicity and Durability	[L6][CO4]	[6M]
	(b)	What is a Transaction? Explain the properties of the transaction. Explain the States of the transaction with a neat sketch.	[L4][CO4]	[6M]
3	(a)	Discuss different phases (states) of transaction?	[L2][CO4]	[6M]
	(b)	Define Schedule? What is a serial schedule?	[L1][CO4]	[6M]
4	(a)	Demonstrate Conflict Serializability?	[L2][CO4]	[6M]
	(b)	Illustrate Concurrent execution of transaction with examples	[L3][CO4]	[6M]
5	(a)	What are the states of transaction?	[L1][CO4]	[6M]
	(b)	What are the two statements regarding transaction?	[L1][CO4]	[6M]
6		Discuss various concurrency control protocols.	[L2][CO4]	[12M]
7		Analyze the Validation based protocols.	[L4][CO4]	[12M]
8		Explain ACID properties and illustrate them through examples?	[L4][CO4]	[12M]
9		Explain Timestamp-Based Concurrency control protocol and the modifications implemented in it.	[L4][CO4]	[12M]
10		Identify the deadlock and 2-phase locking to ensure serializability in concurrency control with locking methods.	[L3][CO4]	[12M]

<u>UNIT – V</u>

RECOVERABILITY, PHYSICAL STORAGE AND DATABASE CONCEPTS

1	(a)	Discuss how do you recover from failure?	[L6][CC	[6M]
	(b)	Explain about the deadlock prevention schemes.	[L2][CO5]	[6M]
2	(a)	Write short note on Buffer management for management of data.	[L3][CO5]	[6M]
	(b)	Explain in detail about ISAM	[L4][CO5]	[6M]
3	(a)	Illustrate classification of storage structure	[L2][CO5]	[6M]
	(b)	Explain concurrency control with lock based protocols	[L4][CO5]	[6M]
4	(a)	Explain different types of locks.	[L2][CO5]	[6M]
	(b)	Discuss about Times tamp based locking protocols?	[L6][CO5]	[6M]
5	(a)	What are the storage types?	[L1][CO5]	[3M]
	(b)	Define blocks?	[L1][CO5]	[3M]
	(c)	What is meant by Physical blocks?	[L1][CO5]	[3M]
	(d)	What is meant by buffer blocks?	[L1][CO5]	[3 M]
6	(a)	What are the types of storage devices?	[L1][CO5]	[6M]
	(b)	Explain Buffer Management in concurrency control system	[L2][CO5]	[6M]
7		Classify various levels of RAID with neat diagrams	[L4][CO5]	[12M]
8	(a)	What are the factors to be taken into account when choosing a RAID level?	[L1][CO5]	[6M]
	(b)	Distinguish between fixed length records and variable length records.	[L2][CO5]	[6M]
9	(a)	Explain how recovery is done using undo logging and redo logging.	[L3][CO5]	[6M]
	(b)	Which level of RAID is best? Why?	[L1][CO5]	[6M]
10	(a)	Explain about failure with loss of non-volatile storage.	[L2][CO5]	[6M]
	(b)	What are the methods that are used in log based recovery?	[L1][CO5]	[6M]

Prepared by: Mr G RAVI KUMAR Assistant Professor/CSE.